Evaluation of topical cysteamine therapy in the CTNS−/− knockout mouse using in vivo confocal microscopy

نویسندگان

  • Jennifer L. Simpson
  • Chyong Jy Nien
  • Kevin J. Flynn
  • James V. Jester
چکیده

PURPOSE The purpose of this study was to assess the ability of quantitative in vivo confocal microscopy (CM) to detect changes in cystine crystal volume in the cystinosisn (Ctns(-/-))mouse cornea following topical cysteamine therapy. METHODS Fifteen Ctns(-/-) mice were sequentially followed using in vivo CM from 3 to 10 months of age. In a second experiment, five mice receiving topical cysteamine eyedrops (0.55%) for 4 weeks were compared to five untreated mice. The volume of corneal cystine crystals was determined by thresholding and counting high intensity pixels in the in vivo CM scans and dividing by the stromal volume to calculate a crystal volume index (CVI). RESULTS Corneal crystals progressively increased in density with age, reaching a peak density at 6-8 months and showing a 70 fold increase in CVI. Eyes treated with cysteamine drops showed significantly less crystal accumulation compared to control eyes (p<0.001) with only a 15% increase in treated eyes (p=ns) compared to 173% increase (p<0.04) for untreated eyes. CONCLUSIONS Measurement of CVI shows that there is a progressive increase in cystine crystal volume up to 8 months of age and that cysteamine eyedrops significantly inhibits progression in the Ctns(-/-) mouse. These findings are similar to those seen clinically in patients with cystinosis, and suggest that measurement of CVI in the Ctns(-/-) mouse may be used as a model to develop novel therapeutic strategies for treating corneal cystinosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative in vivo and ex vivo confocal microscopy analysis of corneal cystine crystals in the Ctns−/− knockout mouse

PURPOSE The purpose of this study was to assess the ability of quantitative in vivo confocal microscopy to characterize the natural history and detect changes in crystal volume in corneas from a novel animal model of cystinosis, the cystinosin (Ctns(-/-)) mouse. METHODS Two Ctns(-/-) mice and one C57Bl/6 mouse were examined at each of the following time points: 2, 3, 5, 7, 10, 12, and 14 mont...

متن کامل

Variations of the Normal Human Limbal Stem Cells Detected by In Vivo Confocal Microscopy

Background  To report normal variations of the limbal structures using in vivo laser scanning confocal microscopy. Methods: This was a retrospective study of fourteen eyes from 11 healthy individuals. Confocal imaging of cornea and limbus was performed using Heidelberg Retina Tomograph III Rostock Corneal Module. Results: The typical structure of the palisades of Vogt (POV) was detected ...

متن کامل

The Influence of Meiotic Spindle Configuration by Cysteamine during in vitro Maturation of Mouse Oocytes

Background: The aim of this study was to assess effects of cysteamine as an anti-oxidant on rate of in vitro maturation of oocyte and determination of its effects on spindle size and shape. Methods: Pre-mature mice were primed with pregnant mare stimulating gonadotrophin (PMSG) and germinal vesicle (GV) stage oocytes were obtained 48 h after. The oocytes were cultured in tissue culture medium (...

متن کامل

Cystinosis (ctns) zebrafish mutant shows pronephric glomerular and tubular dysfunction

The human ubiquitous protein cystinosin is responsible for transporting the disulphide amino acid cystine from the lysosomal compartment into the cytosol. In humans, Pathogenic mutations of CTNS lead to defective cystinosin function, intralysosomal cystine accumulation and the development of cystinosis. Kidneys are initially affected with generalized proximal tubular dysfunction (renal Fanconi ...

متن کامل

Gene transfer may be preventive but not curative for a lysosomal transport disorder.

Cystinosis belongs to a growing class of lysosomal storage disorders (LSDs) caused by defective transmembrane proteins. The causative CTNS gene encodes the lysosomal cystine transporter, cystinosin. Currently the aminothiol cysteamine is the only drug available for reducing cystine storage but this treatment has non-negligible side effects and administration constraints. In this study, for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2011